Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 36(14): 3903-3911, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32126770

RESUMO

Thermogravimetric analysis (TGA) is a technique which can probe chemisorption of substrates onto metal organic frameworks. A TGA method was developed to examine the catalytic oxidation of S-nitrosoglutathione (GSNO) by the MOF H3[(Cu4Cl)3(BTTri)8] (abbr. Cu-BTTri; H3BTTri = 1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene), yielding glutathione disulfide (GSSG) and nitric oxide (NO). Thermal analysis of reduced glutathione (GSH), GSSG, GSNO, and Cu-BTTri revealed thermal resolution of all four analytes through different thermal onset temperatures and weight percent changes. Two reaction systems were probed: an aerobic column flow reaction and an anaerobic solution batch reaction with gas agitation. In both systems, Cu-BTTri was reacted with a 1 mM GSH, GSSG, or GSNO solution, copiously rinsed with distilled-deionized water (dd-H2O), dried (25 °C, < 1 Torr), and assessed by TGA. Additionally, stock, effluent or supernatant, and rinse solutions for each glutathione derivative within each reaction system were assessed by mass spectrometry (MS) to inform on chemical transformations promoted by Cu-BTTri as well as relative analyte concentrations. Both reaction systems exhibited chemisorption of glutathione derivatives to the MOF by TGA. Mass spectrometry analyses revealed that in both systems, GSH was oxidized to GSSG, which chemisorbed to the MOF whereas GSSG remained unchanged during chemisorption. For GSNO, chemisorption to the MOF without reaction was observed in the aerobic column setup, whereas conversion to GSSG and subsequent chemisorption was observed in the anaerobic batch setup. These findings suggest that within this reaction system, GSSG is the primary adsorbent of concern with regards to strong binding to Cu-BTTri. Development of similar thermal methods could allow for the probing of MOF reactivity for a wide range of systems, informing on important considerations such as reduced catalytic efficiency from poisoning, recyclability, and loading capacities of contaminants or toxins with MOFs.


Assuntos
Estruturas Metalorgânicas , Glutationa , Espectrometria de Massas , Óxido Nítrico , Oxirredução , S-Nitrosoglutationa
2.
J Am Chem Soc ; 141(36): 14306-14316, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31426632

RESUMO

Selective separation of enantiomers is a substantial challenge for the pharmaceutical industry. Chromatography on chiral stationary phases is the standard method, but at a very high cost for industrial-scale purification due to the high cost of the chiral stationary phases. Typically, these materials are poorly robust, expensive to manufacture, and often too specific for a single desired substrate, lacking desirable versatility across different chiral analytes. Here, we disclose a porous, robust homochiral metal-organic framework (MOF), TAMOF-1, built from copper(II) and an affordable linker prepared from natural l-histidine. TAMOF-1 has shown to be able to separate a variety of model racemic mixtures, including drugs, in a wide range of solvents of different polarity, outperforming several commercial chiral columns for HPLC separations. Although not exploited in the present article, it is worthy to mention that the preparation of this new material is scalable to the multikilogram scale, opening unprecedented possibilities for low-energy chiral separation at the industrial scale.


Assuntos
Estruturas Metalorgânicas/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Cobre/química , Estruturas Metalorgânicas/química , Estrutura Molecular , Estereoisomerismo , Água/química
3.
Anal Chem ; 90(11): 6867-6876, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29746096

RESUMO

In vitro assays (such as resazurin and MTT) provide an opportunity to determine the cytotoxicity of novel therapeutics before moving forward with expensive and resource-intensive in vivo studies. A concern with using these assays, however, is the production of false responses in the presence of particular chemical functionalities. To better understand this phenomenon, 19 small molecules at 6 concentrations (1 µM-100 mM) were tested in the presence of resazurin and MTT reagents to highlight potential interfering species. Through the use of absorbance measurements (using well-plate assays and UV-vis spectroscopy) with parallel MS analysis, we have shown that significant conversion of the assay reagents readily occurs in the presence of many tested interfering species without the need for any cellular activity. The most attributable sources of interference seem to arise from the presence of thiol and carboxylic acid moieties. Interestingly, the detectable interferences were more prevalent and larger in the presence of MTT (19 species with some deviations >3000%) compared to resazurin (16 species with largest deviation of ∼150%). Additionally, those deviations in the presence of resazurin were only substantial at high concentrations, while MTT showed deviations across the tested concentrations. This comprehensive study gives insight into chemical functional groups (thiols, amines, amides, carboxylic acids) that may interfere with resazurin and MTT assays in the absence of metabolic activity and indicates that proper control studies must be performed to obtain accurate data from these in vitro assays.


Assuntos
Oxazinas/análise , Bibliotecas de Moléculas Pequenas/análise , Xantenos/análise , Estrutura Molecular , Oxazinas/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Xantenos/metabolismo
4.
J Mater Chem B ; 6(24): 4071-4081, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31372219

RESUMO

Crosslinked polyesters with Young's moduli similar to that of certain soft biological tissues were prepared via bulk polycondensation of thiomalic acid and 1,8-octanediol alone, and with citric or maleic acid. The copolymers were converted to nitric oxide (NO)-releasing S-nitrosothiol (RSNO) analogues by reaction with tert-butyl nitrite. Additional conjugation steps were avoided by inclusion of the thiolated monomer during the polycondensation to permit thiol conversion to RSNOs. NO release at physiological pH and temperature (pH 7.4, 37 °C) was determined by chemiluminescence-based NO detection. The average total NO content for poly(thiomalic-co-maleic acid-co-1,8-octanediol), poly(thiomalic-co-citric acid-co-1,8-octanediol), and poly(thiomalic acid-co-1,8-octanediol) was 130 ± 39 µmol g-1, 200 ± 35 µmol g-1, and 130 ± 11 µmol g-1, respectively. The antibacterial properties of the S-nitrosated analogues were confirmed against Escherichia coli and Staphylococcus aureus. The hydrolytic degradation products were analyzed by time-of-flight mass spectrometry after a 10-week study to investigate their composition. Tensile mechanical tests were performed on the non-nitrosated polymers as well as their S-nitrosated derivatives and suggested that the materials have appropriate Young's moduli and elongation values for biomedical applications.


Assuntos
Antibacterianos/farmacologia , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/química , Poliésteres/farmacologia , S-Nitrosotióis/química , Tiomalatos/química , Antibacterianos/síntese química , Plásticos Biodegradáveis/síntese química , Plásticos Biodegradáveis/farmacologia , Ácido Cítrico/química , Módulo de Elasticidade , Escherichia coli/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Maleatos/química , Doadores de Óxido Nítrico/síntese química , Octanóis/química , Poliésteres/síntese química , Polimerização , Staphylococcus aureus/efeitos dos fármacos , Temperatura
5.
J Am Soc Mass Spectrom ; 28(10): 2201-2208, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28631114

RESUMO

We present the use of a simple, one-pot derivatization to allow the polysaccharide dextran to carry multiple positive charges, shifting its molecular weight distribution to a lower m/z range. We performed this derivatization because molecular weight measurements of polysaccharides by mass spectrometry are challenging because of their lack of readily ionizable groups. The absence of ionizable groups limits proton abstraction and suppresses proton adduction during the ionization process, producing mass spectra with predominantly singly charged metal adduct ions, thereby limiting the detection of large polysaccharides. To address this challenge, we derivatized dextran T1 (approximately 1 kDa) by attaching ethylenediamine, giving dextran readily ionizable, terminal amine functional groups. The attached ethylenediamine groups facilitated proton adduction during the ionization process in positive ion mode. Using the low molecular weight dextran T1, we tracked the number of ethylenediamine attachments by measuring the mass shift from underivatized to derivatized dextran T1. Using electrospray ionization time-of-flight mass spectrometry, we observed derivatized dextran chains ranging from two to nine glucose residues with between one and four attachments/charges. Our success in shifting derivatized dextran T1 toward the low m/z range suggests potential for this derivatization as a viable route for analysis of high molecular weight polysaccharides using electrospray ionization time-of-flight mass spectrometry. Graphical Abstract ᅟ.

6.
ACS Appl Mater Interfaces ; 9(6): 5139-5148, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28164705

RESUMO

It has been previously demonstrated that copper-based metal-organic frameworks (MOFs) accelerate formation of the therapeutically active molecule nitric oxide (NO) from S-nitrosothiols (RSNOs). Because RSNOs are naturally present in blood, this function is hypothesized to permit the controlled production of NO through use of MOF-based blood-contacting materials. The practical implementation of MOFs in this application typically requires incorporation within a polymer support, yet this immobilization has been shown to impair the ability of the MOF to interact with the NO-forming RSNO substrate. Here, the water-stable, copper-based MOF H3[(Cu4Cl)3-(BTTri)8] (H3BTTri = 1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene), or Cu-BTTri, was incorporated within the naturally derived polysaccharide chitosan to form membranes that were evaluated for their ability to enhance NO generation from the RSNO S-nitrosoglutathione (GSNO). This is the first report to evaluate MOF-induced NO release from GSNO, the most abundant small-molecule RSNO. At a 20 µM initial GSNO concentration (pH 7.4 phosphate buffered saline, 37 °C), chitosan/Cu-BTTri membranes induced the release of 97 ± 3% of theoretical NO within approximately 4 h, corresponding to a 65-fold increase over the baseline thermal decomposition of GSNO. Furthermore, incorporation of Cu-BTTri within hydrophilic chitosan did not impair the activity of the MOF, unlike earlier efforts using hydrophobic polyurethane or poly(vinyl chloride). The reuse of the membranes continued to enhance NO production from GSNO in subsequent experiments, suggesting the potential for continued use. Additionally, the major organic product of Cu-BTTri-promoted GSNO decomposition was identified as oxidized glutathione via mass spectrometry, confirming prior hypotheses. Structural analysis by pXRD and assessment of copper leaching by ICP-AES indicated that Cu-BTTri retains crystallinity and exhibits no significant degradation following exposure to GSNO. Taken together, these findings provide insight into the function and utility of polymer/Cu-BTTri systems and may support the development of future MOF-based biomaterials.


Assuntos
Óxido Nítrico/química , Quitosana , Cobre , Glutationa , Estruturas Metalorgânicas , S-Nitrosoglutationa
7.
ACS Appl Mater Interfaces ; 9(3): 2104-2113, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28068065

RESUMO

Nitric oxide (NO) occurs naturally in mammalian biochemistry as a critical signaling molecule and exhibits antithrombotic, antibacterial, and wound-healing properties. NO-forming biodegradable polymers have been utilized in the development of antithrombotic or antibacterial materials for biointerfacial applications, including tissue engineering and the fabrication of erodible coatings for medical devices such as stents. Use of such NO-forming polymers has frequently been constrained by short-term release or limited NO storage capacity and has led to the pursuit of new materials with improved NO release function. Herein, we report the development of an NO-releasing bioerodible coating prepared from poly[bis(3-mercapto-3-methylbut-1-yl glycinyl)phosphazene] (POP-Gly-MMB), a polyphosphazene based on glycine and the naturally occurring tertiary thiol 3-mercapto-3-methylbutan-1-ol (MMB). To evaluate the NO release properties of this material, the thiolated polymer POP-Gly-MMB-SH was applied as a coating to glass substrates and subsequently converted to the NO-forming S-nitrosothiol (RSNO) derivative (POP-Gly-MMB-NO) by immersion in a mixture of tert-butyl nitrite (t-BuONO) and pentane. NO release flux from the coated substrates was determined by chemiluminescence-based NO measurement and was found to remain in a physiologically relevant range for up to 2 weeks (6.5-0.090 nmol of NO·min-1·cm-2) when immersed in pH 7.4 phosphate-buffered saline (PBS) at 37 °C. Furthermore, the coating exhibited an overall NO storage capacity of 0.89 ± 0.09 mmol·g-1 (4.3 ± 0.6 µmol·cm-2). Erosion of POP-Gly-MMB-NO in PBS at 37 °C over 6 weeks results in 14% mass loss, and time-of-flight mass spectrometry (TOF-MS) was used to characterize the organic products of hydrolytic degradation as glycine, MMB, and several related esters. The comparatively long-term NO release and high storage capacity of POP-Gly-MMB-NO coatings suggest potential as a source of therapeutic NO for biomedical applications.


Assuntos
Óxido Nítrico/química , Compostos Organofosforados , Polímeros , S-Nitrosotióis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...